
www.manaraa.com

Distributed Data Storage Based on Web Access and
IBP Infrastructure

Lukáš Hejtmánek
Faculty of Informatics, Masaryk University Brno,

Botanická 68a, 602 00 Brno,
Czech Republic

xhejtman@mail.muni.cz

Abstract – This paper introduces an environment for dis-
tributed data storage based on Web access and an Internet
Backplane Protocol storage infrastructure as well as a model
for distributed data storage and load balanced Web front-
ends. We describe combining a Web load balancing sys-
tem with an IBP storage. Integrating Web access with IBP
through libxio provides an access interface to the large stor-
age capacities. Security aspects and solution for highly secure
data storage based on users’ certificates is discussed as well
as integration of IBP storage with files versioning. Mention is
also made of four pilot groups that uses this system for storing
digital pictures and videos.

Key-Words – Distributed data storage, IBP, load bal-
ancing, libxio, web access

1 Introduction
Recently it has become obvious that from the hardware

perspective, both available network and storage capaci-
ties are growing faster than processing capacity exceeding
Moore’s law prediction [1]. Storage facilities are frequently
built as distributed systems to achieve better scalability,
higher availability and performance while often keeping
costs lower when compared with centralized storage. Cur-
rent high performance applications are thus often designed
with the presumption that plenty of storage is available at
users’ disposal. However, the research community is still
seeking for the optimal system that would enable applica-
tions to access distributed storage in an uniform, easy to
use and yet very efficient manner. There is a number of
projects aimed at exploring distributed storage in context
of Grid computing [2], [3], [4] since the Grid environments
and applications are perceived as best candidates for utiliz-
ing the distributed storage.

The Grid related projects in the Czech Republic are cov-
ered by the MetaCenter project [5] which provides parallel
supercomputing facilities as well as powerful processing
capacity in the form of distributed PC clusters. The Meta-
Center project was enhanced during year 2003 by a new
project called Distributed Data Storage (DiDaS) aimed at
complementing the processing capacity with sufficient dis-
tributed storage capacity. In this paper we describe our ap-
proach to creating scalable and secure distributed storage
which is to have a global name space that is easily acces-
sible to end users and that can be integrated into the Grid
environments but that is capable of stand-alone operation
as well. We also briefly describe several data-intensive pi-

lot applications that are the key drivers of our effort because
they are nearly impossible to implement without some scal-
able distributed storage.

The rest of this paper is organized as follows: Section 2
gives a short introduction to state of art of the distributed
storage, Section 3 gives an overview of the directory ser-
vices and the I-Node representation used for building the
file system, and Section 4 details the security aspects of
our approach. Section 5 details the implementation of the
user interface and directory services, Section 6 gives some
performance evaluation results, Section 7 introduces pilot
applications and user groups, and Section 8 gives some di-
rection for the planned future development of the whole
system.

2 State of Art and Related Work
Two basic approaches are being adopted in distributed

storage today: first group contains systems that provide
full-featured file system while the other group are systems
that provide basic block storage only. The systems from
the first group (AFS [6], CODA [7], etc.) provide very ad-
vanced semantics and features and high degree of robust-
ness while sacrificing overall performance.

The systems from the latter group like Internet Back-
plane Protocol (IBP) [8], GridFTP [9], iSCSI [10], and
Google File System [11] are more low-level oriented usu-
ally providing block storage comparable to UNIX I-Node
concept with rather limited semantics. The points of fo-
cus for these approaches are usually scalability and perfor-
mance. These systems can be also seen as a bridge toward
robust and high-performance peer-to-peer networks. How-
ever, such systems need some higher-level developer inter-
faces to facilitate their adoption by applications developers.

Because of performance demands of our pilot applica-
tions, we have decided to choose the latter approach and
build our infrastructure on top of block-oriented distributed
data storage. The block oriented approach also allows us to
create per-file replicas and to stripe even single replica of a
file across multiple hosts thus enabling load balancing over
all available depots for large files without need for creating
as many replicas as the number of available depots.

The file-oriented GridFTP is an extension of FTP proto-
col designed to support requirements by Grid environments
like data transmission over parallel TCP channels and inte-
gration with Grid Security Infrastructure (GSI) [12]. iSCSI

3/1



www.manaraa.com

standing for “Internet SCSI” is an Internet Protocol based
storage networking standard for linking data storage facili-
ties. By carrying SCSI commands over IP networks, iSCSI
is used to facilitate data transfers over intranets and to man-
age storage over long distances.

The IBP developed at the University of Tennessee is
a new promising light-weight protocol for storing data
blocks over the networks. It is designed from scratch to
provide high performance best effort storage service sim-
ilar to best effort IP service in Internet. It allows mul-
tiple TCP connections for both uploading and download-
ing data, time-limited and volatile allocations and due to
its purely block nature, it can be used for stripping large
files across multiple servers. As the IBP has become more
popular, its designers have begun to implement directory
services for the data stored in IBP. Preliminary applications
were IBPvo [13] and IBPmail [14] where users shared their
XML metadata by sending it as e-mails. The second step
was to develop a basic directory service called the XDN
site [15] where users could apply for an account and then
publish their data though XML metadata. Nowadays the
XDN site is deprecated by the LoDN site [16]. The LoDN
site offers more functionality then the XDN site. Users can
store their data that they want to publish and to keep pri-
vate. Downloading is performed via a Java applet, other-
wise users can download XML metadata and then down-
load a particular file on their own. The LoDN site runs on a
single web server with CGI scripts that offer common ma-
nipulation with directories and files. Users can manipulate
their files only and can download published files by other
users. However this project does not have a load-balanced
architecture without a single point of failure and file ver-
sioning. Also it has just a simple authorization permitting
only public and private data. Downloading through a Java
applet is similar to downloading through the web server.
The advantage of the Java applet does not increase the load
on the server and can use multiple TCP streams but it does
not achieve the speed of binary tools that are also available
as a part of IBP. Downloading through CGI binary is faster,
but a greater load is placed on the web server and it always
uses a single TCP stream from the web server to the client.

Both the IBP and the GridFTP can run in user-space
only while the iSCSI requires support in hosting operat-
ing system kernel. The iSCSI also requires rather compli-
cated coordination of parallel access to the distributed stor-
age. We perceive the hard-coded integration of GridFTP
with GSI as a disadvantage of this system as it requires
rather complicated infrastructure to be set up even if it is
not needed by target application. Thus we have chosen to
base our implementation of distributed storage on IBP pro-
tocol and infrastructure which will be described in more
detail later on in this paper.

Probably the closest related project to ours is the
Google File System (GFS) [11] which however does not
have any open-source implementation according to our
knowledge. It is based on autonomous servers storing
blocks of data od fixed size (IBP uses variable size). There
is a master server that keeps metadata and provides direc-

tory services. A client receives metadata from this master
server which keeps them cached for limited period of time
and then the client communicates directly with the storage
servers. Due to its block nature, it also provides data repli-
cation on block level and it provides just API instead of
native filesystem in a way similar to our system. It con-
tains very sophisticated garbage collector that it however
not needed in IBP because it is implicitly built in in form
of time limited allocations. Quotas implemented in GFS do
not need to exist in IBP because of time limited allocations.
Another difference between GFS and IBP based infrastruc-
tures is that the IBP can provide secure anonymous data
storage (the users are not allowed to read/rewrite/delete
data of other users unless explicitly allowed to do so).

3 Model Overview
Target of our model is a system, that can be run in the

user space of the hosting operating system only, that can
perform efficient garbage collection either explicitly or im-
plicitly, and that has very decentralized architecture. We
also want to have per-file replication setup and possibility
to stripe files across several storage servers. The distributed
storage should be accessible via library that mimics stan-
dard UNIX I/O functions to allow application developers to
incorporate this functionality into their applications easily.
We have targeted our work at applications that upload the
data into the storage infrastructure once, download them
many times, and change them rarely or not at all allowing
us to implement just subset of full UNIX I/O functionality.

After testing various distributed storage systems (some
of them being mentioned in the previous section) we have
found that none of them completely satisfies our needs and
we have opted for basing our development effort on the In-
ternet Backplane Protocol (IBP). This consists of low-level
storage infrastructure building blocks on top of which we
create our services, most importantly the directory services
and user access services. We are proposing an architec-
ture that will not have a single point of failure. Also as
the IBP doesn’t provide secure data transfer mechanisms
and we deploy the whole infrastructure in an Internet en-
vironment, we need to secure the underlying network in-
frastructure in order to protect data from unauthorized and
malicious users.

Our directory service provides semantics weaker then
that of the standard UNIX semantics, as it is mainly used
for storing large collections of data that are written once
and then read many times. This design is suitable for appli-
cations such as large video and image archives that are also
among our primary pilot applications.

A common problem with distributed high-performance
filesystems is that no applications support them directly.
One approach might be in emulating a local filesystem in a
transparent way which usually requires some modification
to the kernel of operating system. We have therefore devel-
oped a libxio (Sec. 5.3) library that provides a straight-
forward interface resembling traditional UNIX file opera-
tions.

3/2



www.manaraa.com

Our model of distributed storage uses architecture com-
posed of two layers. The lower layer used for file storage
and representation is called I-Node abstraction and is based
on the IBP infrastructure. The higher layer provides direc-
tory services and user access services.

3.1 I-Nodes
The I-Nodes layer is entirely based on the IBP infras-

tructure. The IBP works in a soft consistency mode of-
fering time-limited allocation. The basic atomic unit of the
IBP is a byte array which can be used in a way similar to the
traditional UNIX I-Node concept. The byte arrays are col-
lected as serializable metadata information (called exNode)
which describes particular files. An IBP depot (server) is a
basic building block of the IBP infrastructure offering disc
capacity in the form of the byte arrays. The IBP depots are
registered with an L-Bone server that tries to perform load
balancing and minimize the network utilization based on
optimizing the location of the data across the depots. All
the depots registered with one L-Bone server can be seen
as a single depot providing large storage capacity.

After the data are uploaded into some depots of the in-
frastructure, an XML serialization of metadata is created
and usually stored as a file. Metadata consists of the iden-
tification of byte arrays in which the data are stored; this is
similar to the UNIX I-Nodes concept except that the IBP
blocks can be of any size, can contain duplicates (file repli-
cas), and can use various end-to-end services [17]. The
soft consistency of the IBP model is ensured by the fact
that each block (file) allocation has time-limited duration1.

3.2 Directory and User Access Services
The I-Nodes need to be collected by some directory ser-

vices if they are to be available via a common directory
structure. We decided to create a Web based directory ser-
vice. To provide a more robust and scalable service without
a single point of failure we decided to use load balancing
strategies on the web server level.

When using setup with multiple web servers, we need
to ensure consistency by distributing files with a serialized
representation of metadata to all the web servers. The most
important goal is to prevent users from creating files with
the same name stored under the same path name.

Our semantics is weaker than that of UNIX. Our seman-
tics allows files to be read and written. We allow multiple
clients reading the same file whereas multiple clients writ-
ing are forbidden (with the exception of writing different
versions of the file as shown below). Files are removed
immediately and there is no reference counting performed
unless versioning is performed. Files have limited duration
in time but there are special persistent directories where ex-
piration time is refreshed by a specialized daemon.

1The IBP allocation blocks have unique sequential numbers to ensure
that the same block is not allocated by another user when previous allo-
cation expires and thus even if the previous user still has the serialized
metadata, he is unable to read the original blocks that now contains new
data belonging to new allocation.

3.3 Directory Services Versioning
Due to the nature of the IBP byte arrays, the CVS-like

versioning system can be offered: the IBP byte array may
not be overwritten and the IBP depot allows the byte array
to be appended only. When the user alters a file, a new byte
array is allocated and a new file with serialized metadata
representation is created. Thus we can keep track of old
metadata files and hold all the IBP allocations. By default,
the user has access to the latest version of the file although
any available version can be retrieved on request. When
modifying part of a file only, the unmodified parts of the
file are shared among all the versions of the particular file.
This means that versioning is optimized for space at the
expense of a non-trivial file being removed while all the
versions must be checked to see if a particular byte array is
being shared or not (e. g. by reference counting technique).

When the user opens a file, a particular version is ac-
cessed until it is closed. It is possible that new versions of
the file appear while the file is being accessed in which case
the user keeps accessing the version that was used when the
file was first opened.

4 Security Model
Security aspects differ between local storage and net-

work storage. For local storage, only the administrator
has access to low level media and it is therefore enough
to use only a common UNIX ACL system of security hav-
ing users, groups and three kinds of access (read, write,
execute/directory access). The administrator is a trusted
person who will not compromise nor tamper with the data
of users. Users are protected against one another by access
rights while no ordinary user has access to low level media
to bypass the protection mechanism provided by the kernel
of the operating system.

In the case of network storage, we are dealing with the
presumption of an evil Internet. Many users can have ac-
cess to low level media on the network level and therefore
it is necessary to prevent man-in-the-middle attacks to keep
users’ data safe. This requires secure communication chan-
nels between the server and client as well as among the
servers. We must ensure that no one can fake user’s iden-
tity and no unauthorized person can get access to the data
during network transfer.

The IBP has its own security model. When the user
allocates a byte array at some IBP depot, the IBP depot re-
turns an array of IBP capabilities—the capability for read-
ing, writing and managing. Any user possessing these ca-
pabilities has access to that byte array which can read and
write (in append only mode) and can change the duration
and destroy the array. However those capabilities are trans-
ferred through insecure TCP sockets both from the server
to the client and from the client to the server and stored in
an XML serialization of the metadata.

Besides these capabilities, the IBP offers an encryption
as a part of end-to-end services. The user can choose the
AES or DES encryption of byte arrays. Each byte array can
have its own encryption key. This key is also stored in an
XML metadata file but it is not transferred to the IBP depot.

3/3



www.manaraa.com

Infrastructure
IBP

USER Man
in the

Middle

Web
Server

in the
Middle

Man

Fig. 1. Man-in-the-middle attack.

To keep the low level media secure, we are forcing users
to use HTTPS to communicate with the Web Server. Al-
most any user is able to establish HTTPS connection to
the Web Server but not many users are able to establish
an IPsec channel to the Web Server or to use other secure
methods to make the connection secure. On the other hand
we are able to control our Web Servers and the IBP infras-
tructure so that the Web Servers and IBP depots communi-
cate via IPsec channels as shown in the Fig. 2.

Web
Server Infrastructure

IBP
USER

HTTPS IPsec

Fig. 2. Secure channels.

It is obvious that XML metadata should be transferred
only via secure channels. We store XML metadata on the
shared AFS volume at each Web Server using IPsec tun-
nels among Web Servers and AFS servers in order to keep
the metadata safe. Also web servers and the IBP depots
are connected via IPsec tunnels as shown in the Fig. 2 to
prevent capabilities disclosure.

Since AES/DES encryption keys are stored directly in
the XML metadata file, the administrators can decrypt a
user’s data and users need to use their own methods of en-
cryption such as PGP if they need to store highly sensitive
data.

Users can upload files directly to the IBP depots us-
ing native IBP tools and only then upload XML metadata
files. In such a case the data can be protected using end-to-
end AES/DES encryption; however, the capabilities can be
eavesdropped and the attacker can use them only to remove
a user’s data since reading content is protected by encryp-
tion. However, there is a workaround for this issue: When
user uploads an XML metadata file to the web server, it
may be requested to create a copy of the file. The copying
process is performed by the web server in the secure en-
vironment so the eavesdropper does not gain access to the
capabilities thus he cannot remove user’s data. The user
can the download the new copy to ensure it is the same
as the original local file. An exploitable copy can be kept
for download optimization, as the download utility can per-

form load balancing among the IBP depots or it can be re-
moved to optimize the storage capacity usage.

Although the Directory Services are based on the web
technology implemented by CGI scripts as shown below,
we cannot use underlying the filesystem ACL system of se-
curity unless CGI scripts are suid executables and each user
and group exists in the system. We are using authorization
services for matching users, groups, and file privileges. File
privileges are only applied to metadata files since without
them it is impossible to access the files themselves.

5 Prototype Implementation
By the first quarter of 2004, the DiDaS project has built

several IBP depots distributed across various locations in
the Czech Republic with a total of more than 7 TB of stor-
age. Various hardware is used in order to evaluate the per-
formance of different systems ranging from software-based
disk arrays to either internal or external hardware based so-
lutions (using ATA, SATA, and SCSI disks)2. All arrays
run in RAID5 setup and host computers are equipped with
Intel Pentium 4 Xeon with 1 GB of RAM and Gigabit Eth-
ernet interface and run Linux operating system. Each server
hosts an IBP depot and web server and the server, with the
SCSI disks also hosts the L-Bone Server, an LDAP Server,
and an AFS Server.

The IBP layer consists of the IBP depots, L-Bone
Server, and LDAP server. Currently only one L-Bone
server and one LDAP server is used but it is possible to
have a backup L-Bone Server and backup LDAP server as
well. Each server has access to an AFS shared volume that
stores XML metadata files.

5.1 User Interface
After successful authentication and authorization at the

web server, the user is able to see a shared directory and
his/her own private directory. These directories are brows-
able in the usual way by the web browsing. User can upload
and download files or XML metadata if they have the ap-
propriate access rights. When uploading a file users must
specify their desired duration as the IBP byte array alloca-
tions are time-limited. Unlimited duration is possible only
for files located in the special directory whose content is
periodically refreshed by a refresh daemon. Users can also
specify the number of copies and whether the content of the
file should be encrypted.

As already discussed in Sec. 4, users can also use IBP
native lors tools to directly access the IBP depots and then
upload the XML metadata to directories on the web server.

5.2 Software Implementation
The software implementation can be divided into two

parts: storage service and directory service that provides
metadata handling.

a) Storage service.: This service consists of the
IBP depots. The IBP depots are interconnected via IPsec

2Preliminary performance evaluation of internal hardware solutions can
be found in [17].

3/4



www.manaraa.com

tunnels to provide a high level of data security trans-
ferred among the servers. Users can access depots through
the web servers then all the communication is encrypted
(SSL/TLS secured HTTP protocol) or they can access de-
pots directly using lors tools but in such a case the security
is weakened as discussed in Sec. 4. The IBP depots are reg-
istered with the L-Bone server. We use a modified L-Bone
server which monitors disk capacity usage on the particular
IBP depot. The L-Bone server also runs a prediction server
that collects information about disk usage on other IBP de-
pots and instructs the L-Bone server to offer less loaded
depots if possible.

b) Directory service.: This part consists of a
metadata repository, authority services and load-balanced
Apache web servers as shown in Fig. 3.

user

attributes

upload

download

remove

rename
AFS storage

IBP depots

Authorization
Service

directory service
Web based

Metadata permission

XML Meta−data

FILE Data

lors t
oolsWeb browser

Fig. 3. Directory Service overview.

CGI scripts run on web servers to offer basic manip-
ulation with files. Users can upload, download, remove,
rename, and change attributes. The attributes allow users
to set the level of redundancy, expiration period of files,
and access permissions for files. The scripts use libxio
library (Sec. 5.3) to access files in the IBP depots and they
store the resulting serialized XML metadata file onto the
shared AFS volume.

Authentication of users is based either on basic HTTP
authentication or on user certificates. Currently the autho-
rization service is implemented directly on the servers but
we intend to either create an autonomous authorization ser-
vice or use an existing one that performs ACL matching for
stored files.

Metadata are stored on the local disk and are made ac-
cessible via the web server. However as one web server
would be a bottleneck for the whole system and would
create a single point of failure in the architecture as dis-
cussed above, we have set up several web servers coordi-
nated via mod backhand [18] that performs load balanc-
ing based on monitoring the system load on each machine.
The mod backhand can be used in two basic modes: it
can be configured as a proxy or it can perform HTTP redi-
rects to other web servers. When working in proxy mode, it
contacts the web server with the lowest load and then prox-
ies data to the client. The redirection mode uses the HTTP

redirection request to another web server. Fig. 4 shows
the basic setup with redirecting where all web servers are
equal in their functions and Fig. 5 shows a possible two
tier setup where one layer of web servers is used solely
for redirecting. It is also necessary to combine web server
load-balancing with a DNS round robin in order to avoid
all clients overloading one server with initial requests.

Currently our implementation uses the model shown in
Fig. 4 where all the web servers run mod backhand and
redirect to other server if needed. However because of the
stateless architecture of HTTP protocol, there might be a
whole sequence of redirects and it might take quite a long
time for some server to accept the client. Therefore we also
use URL rewriting to send information to the server that the
request has already been redirected, so that the request must
not be redirected any more.

5.3 libxio IBP Access Library
In order to simplify adoption of distributed storage in

end user applications we have developed the libxio ab-
straction library that closely mimics standard UNIX I/O
interface. It can access both IBP stored data when IBP
URI is used and local files when normal filename is pro-
vided instead of IBP URI. The library provides equiva-
lents for following standard I/O functions: open, close,
read, write, fttruncate, lseek, stat, fstat,
and lstat. The functions can be used in common way ex-
cept for that IBP stored data can not be opened in O_RDWR
mode at the moment.

The IBP URI has the following format:

lors://host:port/local_path/file
?bs=number&duration=number
&copies=number&threads=number
&timeout=number&servers=number
&size=number

where the host parameter is a specification of a L-Bone
server to be used, the port is a specification of L-Bone
server port (default is 6767), the bs is a specification
of block-size for transfer in megabytes (default value is
10 MB), the duration specifies allocation duration in
seconds (default is 3600 s), requested number of replicas is
specified by the copies (defaulting to 1), the threads
specifies number of threads (concurrent TCP streams) to be
used (default is 1), the timeout parameter is specification
of timeout in seconds (defaulting to 100 s), the servers
parameter specifies number of different IBP depots to be
used (default is 1), and the size specifies projected size
of file to ensure that IBP depot has enough free storage.
It is possible to override default values using environment
variables, too. If the given filename doesn’t start with the
lors:// prefix, the local_path/file is accessed as
local file instead.

When writing a file into the IBP infrastructure, the
local_path/file specifies the local file where a seri-
alized XML representation of the file in IBP will be stored.
We advise users to use .xnd suffix for metadata files. At
least an L-Bone server must be specified when writing a file

3/5



www.manaraa.com

mod_backhand
Web

mod_backhand
Web

mod_backhand
Web

user

Fig. 4. mod backhand redirect configuration with all servers having the same role.

mod_backhand
Web

Web

mod_backhand
Web

mod_backhand
Web

WebWebWebWeb Web

user

Fig. 5. Two tier mod backhand redirect configuration.

into IBP. In our experience the metadata file occupies ap-
proximately 1/10th of the actual data size in IBP on aver-
age.

When a file stored in IBP is read, the
local_path/file specifies the local file con-
taining a serialized XML representation of the
IBP file. User can also use a short form URI
lors:///local_path/file as the servers are
already specified in local XML representation.

Based on libxio library we have enabled IBP capa-
bilities in several pilot applications. More information on
libxio with detailed description of both user and devel-
oper interfaces can be found in [17].

6 Performance Evaluation of Prototype
Implementation

For verifying our storage infrastructure we have per-
formed measurements of bandwidth achievable for varying
number of clients. We wanted to provide values that are
close to real-world results of our applications and thus we
used part of DiDaS production infrastructure as a testbed
for the measurements. As parallel reading performance
is critical for our applications, we have focused our mea-
surements on reading performance with multiple parallel
clients. We used following three storage servers:

• a server equipped Intel Pentium 4, 1 GB RAM, inter-
nal hardware RAID-5 array with SCSI disks, and GE
network interface connected directly to client cluster
in Brno

Gb Switch

Gb Switch

1Gb
1Gb

WAN

Cl. #2Cl. #1 Cl. #3 Cl. #4

1Gb

1Gb1G
b1G

b1Gb

router 400Mb

Brno

1G
b

Prague

Fig. 6. Measurement testbed setup.

• a server equipped Intel Pentium 4, 1 GB RAM, inter-
nal hardware RAID-5 with ATA disks, and GE net-
work interface connected via a router with bandwidth
of approx. 400 Mbps

• a server equipped Intel Pentium 4, 1 GB RAM, ex-
ternal hardware RAID-5 with ATA disks, and GE
network interface located in Prague connected with
2.5 Gbps WAN link (the bottleneck is local GE inter-
face)

3/6



www.manaraa.com

as shown in Fig. 6. The data for measurement were up-
loaded into IBP so that all the data were evenly distributed
across all the depots.

We selected up to 20 nodes from MetaCenter PC clus-
ter infrastructure to work as clients, all located in the same
cluster in Brno. All clients were equipped with 2× Intel
Pentium 4 at 2.5 GHz, 1 GB of RAM and a Gigabit Ethernet
LAN connection. The client jobs were distributed evenly
across the machines.

The results of the experiment are summarized in Fig. 7.
It can be seen that the system scales well for at least 64
simultaneous clients downloading the data. For 128 clients
the performance suffers from sudden drop which is subject
to further investigation.

2 4 8 16 32 64 128
Number of clients

0

100

200

300

400

500

600

700

800

A
gg

re
ga

te
 b

an
dw

id
th

 [M
bp

s]

Fig. 7. Aggregate bandwidth achieved when reading from
storage testbed for varying number of clients.

7 Pilot Applications
There are several user groups used as pilot applica-

tions by our project. One group is at the Faculty of In-
formatics, Masaryk University, which has been recording
lectures at the faculty for the last two years [19]. This
group needs to record, process, and store more than 20
hours of video per week. Each lecture is recorded as raw
video in Digital Video (DV) format [20] (requiring approx-
imately 14 GB per hour), decoded to raw video (requiring
temporarily even 7× more capacity), de-interlaced, cleaned
and finally encoded into target RealMedia format used for
streaming in two qualities and DivX format used for down-
loading [21]. The size required for one lecture is approx-
imately 700 MB in total. Due to trends of inter-faculty or
even inter-university lecturing, we expect to be able to pub-
lish the content of recorded lectures to all the students at
the participating universities.

The second group is at the National Library in Prague
which has vast archives of digital books and maps. The
archives consist of digitally scanned pages of books and
maps in several resolutions (qualities). Users have an
overview using files with small resolution while more de-
tails can be obtained with higher resolution scans. It con-
sists of about two million files totaling about 1 TB of data.

These digital materials should be made available for aca-
demic use. Potential users are spread across the whole
Czech Republic so the distributed solution is very suitable.

The third group is also at the National Library in
Prague. They have digital scans stored in MrSID [22] for-
mat. We aim to store corresponding open format of that
data into our depots and then to offer an application to Mr-
SID in the form of the browser plug-in.

The fourth pilot application is a storage capacity that
can be used by all the Czech academic community so as to
enable participants to store and share their large data sets.

8 Future Work
We would like to focus our attention on integrating

our web server access to the IBP infrastructure with a
real filesystem in the Linux operating system via LUFS
project [23]. The goal here is to develop a distributed
filesystem with reduced semantics close to FTP semantics
with a CVS-like versioning. Authorization in this filesys-
tem will be done through certificates for the authorization
service or through Kerberos tokens.

We would also like to offer some kind of generic ser-
vice interface on the web server level. For example when
user upload a video file, a change of encoding might be re-
quested during or just after the upload process. The CGI
scripts will set up a transcoding job to run on the Meta-
Center cluster computing facilities to perform transcoding
to the desired format.

Another goal is to offer different semantics for the file
access. Most significantly we would like to allow concur-
rent writing to the same file as some cluster computations
require very large shared output files. This file can be read
even while writing is taking place.

Acknowledgments
The work has been supported by CESNET Develop-

ment Fund project 018/2002. We would also like to thank
to Luděk Matyska and Petr Holub for kindly supporting our
work and for stimulating discussions, and to Miroslav Ruda
and the rest of MetaCenter staff for helping us with getting
our storage infrastructure integrated with the MetaCenter
grid infrastructure.

References
[1] M. D. Brown et al.. “Blueprint for the future of high-performance

networking.” Communications of the ACM, 46(11):30–77, 2003.
Special issue on High-Performance Networking.

[2] The DataGrid Project. http://eu-datagrid.web.cern.
ch/eu-datagrid/.

[3] R. Buyya. “The virtual laboratory project.” IEEE Distributed
Systems Online, 2(5), 2001. http://computer.org/
dsonline/0105/features/tvl0105.htm.

[4] Information Power Grid: NASA’s Computing and Storage Grid.
http://www.ipg.nasa.gov/.

[5] MetaCenter Project, CESNET. http://meta.cesnet.cz/.

[6] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
“Scale and performance in a distributed file system.” ACM
Transactions on Computer Systems, 6(1):51–81, 1988.
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/
project/coda/Web/docdir/s%11.pdf.

3/7



www.manaraa.com

[7] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.
Siegel, and D. C. Steere. “Coda: A highly available file system for a
distributed workstation environment.” IEEE Transactions on Com-
puters, 39(4):447–459, 1990.

[8] M. Beck, T. Moore, and J. S. Planck. “An end-to-end ap-
proach to globally scalable network storage.” In SIGCOMM’02,
2002. http://loci.cs.utk.edu/ibp/files/pdf/
SIGCOMM02p1783-beck.pdf.

[9] B. Allcock, J. Bester, J. Bresnahan, A. N. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke.
“Data management and transfer in high performance computa-
tional grid environments.” Parallel Computing Journal, 28(5):749–
771, May 2002. http://www.globus.org/research/
papers/dataMgmt.pdf.

[10] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zei-
dner. iSCSI. IETF Draft, IP Storage Working Group, Internet En-
gineering Task Force, January 2003. http://www.ietf.org/
internet-drafts/draft-ietf-ips-iscsi-20.txt.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. “The google file
system.” In 19th ACM Symposium on Operating Systems Prin-
ciples, October 2003. http://www.cs.rochester.edu/
sosp2003/papers/p125-ghemawat.pdf.

[12] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. “A security archi-
tecture for computational grids.” In Proc. 5th ACM Conference on
Computer and Communications Security Conference, pages 83–92,
1998.

[13] M. Beck and T. Moore. “Logistical networking for digital video on
internet2.” In Fall 2003 Internet2 Member Meeting, Indianapo-
lis, IN, USA, October 2003. http://loci.cs.utk.edu/
modules.php?name=Publications&lid=213.

[14] W. R. Elwasif, J. S. Plank, M. Beck, and R. Wolski. “IBP-
mail: Controlled delivery of large mail files.” In NetStore
’99: Network Storage Symposium, Seattle, WA, USA, October
1999. http://loci.cs.utk.edu/modules.php?name=
Publications&lid=221.

[15] XDN site. http://promise.sinrg.cs.utk.edu/xdn/
login.html.

[16] LoDN site. http://promise.sinrg.cs.utk.edu/lodn.
[17] L. Hejtm ánek and P. Holub. IBP deployment tests and integration

with DiDaS project. Technical Report 20/2003, CESNET, 2003.
[18] Y. Amir, T. Schlossnagle, et al.. mod backhand. http://www.

backhand.org/mod_backhand/.
[19] E. Hladk á and M. Liška. “Předn ášky ze z áznamu (Lecture Record-

ing).” In Širokopásmové sı́tě a jejich aplikace (Broadband Networks
and Their Applications), pages 130–133, CVP UP Olomouc, 2003.
ISBN 80-244-0642-X. Available in Czech only.

[20] Internation Electrotechnical Commission. IEC 61834: Recording
– Helical-scan digital video cassette recording system using 6,35
mm magnetic tape for consumer use (525-60, 625-50, 1125-60 and
1250-50 systems), 1998, 1999, 2001. Parts 1–10, http://www.
iec.ch.

[21] P. Holub and L. Hejtm ánek. “Distributed encoding environment
based on grids and IBP infrastructure.” In Terena Networking Con-
ference ’04, Rhodes, Greece, July 2004. Accepted submission.

[22] MrSID: A Dynamic Image Format. http://www.
lizardtech.com/solutions/geo/mrsid_overview.
php.

[23] F. Malita. LUFS: Linux Userland FileSystem. http://lufs.
sourceforge.net.

3/8


